On Nikol’skii Inequalities for Domains in $${\mathbb {R}}^d$$ R d

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing minimal interpolants in $C^{1, 1}(\mathbb{R}^d)$

We consider the following interpolation problem. Suppose one is given a finite set E ⊂ R, a function f : E → R, and possibly the gradients of f at the points of E. We want to interpolate the given information with a function F ∈ C(R) with the minimum possible value of Lip(∇F ). We present practical, efficient algorithms for constructing an F such that Lip(∇F ) is minimal, or for less computatio...

متن کامل

Hardness of almost embedding simplicial complexes in $\mathbb R^d$

A map f : K → R of a simplicial complex is an almost embedding if f(σ) ∩ f(τ) = ∅ whenever σ, τ are disjoint simplices of K. Theorem. Fix integers d, k ≥ 2 such that d = 3k 2 + 1. (a) Assume that P 6= NP . Then there exists a finite k-dimensional complex K that does not admit an almost embedding in R but for which there exists an equivariant map K̃ → Sd−1. (b) The algorithmic problem of recognit...

متن کامل

Geometric complexity of embeddings in ${\mathbb R}^d$

Given a simplicial complex K , we consider several notions of geometric complexity of embeddings of K in a Euclidean space R : thickness, distortion, and refinement complexity (the minimal number of simplices needed for a PL embedding). We show that any n-complex with N simplices which topologically embeds in R , n > 2, can be PL embedded in R with refinement complexity O(e 4+ǫ ). Families of s...

متن کامل

Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 2016

ISSN: 0176-4276,1432-0940

DOI: 10.1007/s00365-016-9335-5